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Hamiltonians

An 𝑛-qubit Hamiltonian is a 2𝑛 × 2𝑛 Hermitian matrix.

It encodes constraints, interactions, or “rules” of a physical system,
its eigenvectors correspond to physical states of the system, and its 
eigenvalues are the energies of those states.

𝜓 𝐻 𝜓 = 𝜆

𝑛-qubit state  Vector in ℂ2𝑛
 with 𝑣 2 = 1

State |𝑣⟩  Vector 𝑣

⟨𝑣|  Row vector 𝑣𝑇∗

State 𝜌  Outer product |𝑣⟩⟨𝑣| = 𝑣𝑖
𝑇∗

𝑣𝑖

Tensor product ⊗   “Multiplying” spaces  i.e. ℝ4 ⊗ ℝ4 = ℝ16



Local Hamiltonians

A 𝒌-local Hamiltonian is a sum of Hamiltonian terms each acting on at 
most 𝑘 qubits

𝐻 = 

𝑖

𝐻𝑆𝑖
⊗ 𝕀 ഥ𝑆𝑖

 𝑆𝑖 ≤ 𝑘

𝐻 = 𝐻1 + 𝐻2 + 𝐻3 + 𝐻4 + ⋯



𝑘-LH

The 𝒌-LH problem is, given a 𝑘-local Hamiltonian, estimate its minimum 
eigenvalue, a.k.a. its ground state energy.

Formally: decide if 𝜆min < 𝑎 (YES) or 𝜆min > 𝑏 (NO) for 𝑏 − 𝑎 ≥
1

poly(𝑛)
.

1
−1

0
1 1,2

+

0 −1
1 −1

1 0 1
1 1,3

+ ⋯

𝑥1 ∨ 𝑥2 ∧ 𝑥1 ∨ 𝑥3 ∧ 𝑥3 ∨ 𝑥4 ∧ ⋯

Hamiltonian Boolean formula

𝑘-local Hamiltonian 𝑘-CNF

𝑘-LH 𝑘-Max-SAT



Complexity

 𝑘-Max-SAT is NP-complete for 𝑘 ≥ 2

Similarly, 𝑘-LH is QMA-complete for 𝑘 ≥ 2

Hardness is subtle, though. 

Goal: Characterize the complexity of 𝑘-LH when the problem is 
restricted to various subsets of Hamiltonians



Complexity

Just enumerating sets of Hamiltonians seems…
• tedious

• uninformative – what’s the underlying structure?

• difficult

So we consider sets of families defined by interesting properties



𝑆-LH

Let a Hamiltonian family be defined by the allowed interactions, i.e. by 
the allowed 𝑘-qubit terms.

(we will focus on sets 𝑆 of 2-qubit, 4 × 4, terms)

For a fixed set 𝑆 of allowed terms/allowed interactions, 
the 𝑺-LH problem is 𝑘-LH with the additional promise/restriction that 
any input is of the form 

𝐻 = σ𝑖 𝑤𝑖𝐻𝑖 with each 𝐻𝑖 ∈ 𝑆



𝑆-LH

• 𝑆-LH with 𝑆 = {𝑋 ⊗ 𝑋 + 𝑌 ⊗ 𝑌 + 𝑍 ⊗ 𝑍} is the Quantum Max-Cut 
problem.

• Classically, ≠ -Max-SAT is Max-Cut.

• {2-Out-of-4}-SAT is NP-complete, 
  used in The Power of Unentanglement [ABDSF 08]

For a fixed set 𝑆 of allowed terms/allowed interactions, 
the 𝑺-LH problem is 𝑘-LH with the additional promise/restriction that 
any input is of the form 

𝐻 = σ𝑖 𝑤𝑖𝐻𝑖 with each 𝐻𝑖 ∈ 𝑆



Complexity classification

We’re interested in classifying the complexity of 𝑆-LH as a function of 
the set 𝑆 of allowed terms.



Detour: 
Complexity classifications of constraint satisfaction problems (CSPs) as a function of 
the allowed constraints



Complexity classification of CSPs

The complexity of satisfiability problems, Schaefer, 1976



Complexity classification of CSPs

Schaefer’s dichotomy theorem, 1976:

Given any fixed set 𝑆 of allowed Boolean constraints,

deciding satisfiability of a formula

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑖ٿ  𝐶𝑖 for 𝐶𝑖 ∈ 𝑆

a.k.a. 𝑺-SAT

❖is in P if any of some simple conditions is true,

❖and otherwise is NP-complete. 

a) “ Every relation in S is 0-valid
b) Every relation in S is 1-valid
c) Every relation in S is weakly positive
d) Every relation in S is weakly negative
e) Every relation in S is affine
f) Every relation in S is bijunctive ”



Complexity classification of CSPs

• [Schaefer 1976] classifies 𝑆-SAT

• [Creignou 95] with [Khanna, Sudan, Williamson 97] classify 𝑆-Max-SAT

• [Jonsson 00] classifies 𝑆-Max-SAT with positive & negative weights.

• [Jonsson, Klasson, Krokhin 06] and [Thapper, Živný 16] extends this to 
non-binary variables.
• (Only positive weights)



End of detour, back to quantum



Complexity classification of 𝑆-LH

[Cubitt, Montanaro 13] classify 𝑆-LH for all sets 𝑆 of 2-qubit terms:
Given a fixed set 𝑆 of 2-qubit Hamiltonian terms, 

𝑆-LH is either in P, or is NP-, StoqMA-, or QMA-complete.

• If every matrix in 𝑆 is 1-local, 𝑆-LH is in P; 
• Otherwise, if there exists 𝑈 ∈ 𝑆𝑈(2) such that 𝑈 locally diagonalises 𝑆, then 𝑆-

LH is NP-complete;
• Otherwise, if there exists 𝑈 ∈ 𝑆𝑈(2) such that, for each 2-qubit matrix 

𝐻𝑖 ∈ 𝑆, 𝑈⊗2𝐻𝑖𝑈†⊗2 = 𝛼𝑖𝑍⊗2 + 𝐴𝑖 ⊗ 𝐼 + 𝐼 ⊗ 𝐵𝑖

where 𝛼𝑖 ∈ ℝ and 𝐴𝑖 , 𝐵𝑖 are arbitrary single-qubit Hermitian matrices, then 𝑆-LH 
is StoqMA-complete;

• Otherwise, 𝑆-LH is QMA-complete. [Bravyi, Hastings 2014]



What about product states?



What about product states?

We have a full classification of 𝑆-LH for 2-qubit terms,
i.e. estimating the minimum eigenvalue.

What about other Hamiltonian problems?

• Other ground state properties

• Constrained optimization

• Thermal limit

• …

• Product states



Product states

A product state is an unentangled tensor product of single-qubit states
𝜌 = 𝜌1 ⊗ 𝜌2 ⊗ 𝜌3 ⊗ ⋯ ⊗ 𝜌𝑛

• Product states can be described efficiently classically.

𝑎 𝑏
𝑐 𝑑

⊗
𝑒 𝑓
𝑔 ℎ

⊗
𝑖 𝑗
𝑘 𝑙

⊗ ⋯ ⊗
𝑤 𝑥
𝑦 𝑧



Product states

A product state is an unentangled tensor product of single-qubit states
𝜌 = 𝜌1 ⊗ 𝜌2 ⊗ 𝜌3 ⊗ ⋯ ⊗ 𝜌𝑛

• Product states can be described efficiently classically.

• They’re intermediate between classical and general quantum states.

• For many natural sets of Hamiltonians, product states are rigorously 
near-optimal.
• [Brandao, Harrow 13]: “High”-degree Hamiltonians’ ground states are close to 

product states (monogamy of entanglement!) 

• They’re a popular ansatz in classical Hamiltonian approximation 
algorithms



Product state problems

A product state is an unentangled tensor product of single-qubit states
𝜌 = 𝜌1 ⊗ 𝜌2 ⊗ 𝜌3 ⊗ ⋯ ⊗ 𝜌𝑛

𝑘-LH → prodLH

 given a local Hamiltonian, estimate the minimum energy over all 
product states: 

min
𝜌=𝜌1𝜌2…𝜌𝑛

Tr 𝐻𝜌

𝑆-LH → 𝑺-prodLH

 the problem prodLH restricted to 𝐻 = σ𝑖 𝑤𝑖𝐻𝑖 with 𝐻𝑖 ∈ 𝑆.



Main Theorem
Drum roll…



Complexity classification of product state problems

Main Theorem

For any fixed set of 2-qubit Hamiltonian terms 𝑆,

➢if every matrix in 𝑆 is 1-local then 𝑆-prodLH is in P,

➢and otherwise 𝑆-prodLH is NP-complete.

Corollary

For any fixed set of 2-qubit Hamiltonian terms 𝑆,

• the problem 𝑆-LH is at least NP-hard iff 𝑆-prodLH is NP-complete.

• the problem 𝑆-LH is in P iff 𝑆-prodLH is in P.



Proof outline

Main Theorem

For any fixed set of 2-qubit Hamiltonian terms 𝑆,

➢if every matrix in 𝑆 is 1-local then 𝑆-prodLH is in P,

➢and otherwise 𝑆-prodLH is NP-complete.

✓If every term is 1-local, then we can optimize the state of each qubit individually, 
so the problem is in P.

✓prodLH is always contained in NP, using product states’ concise classical 
descriptions  Tr 𝐻𝜌 = σ𝑖𝑗 Tr(𝐻𝑖𝑗  𝜌𝑖𝜌𝑗)

❑To Do: show if 𝑆 contains a nontrivial 2-qubit term, then 𝑆-prodLH is NP-hard.
• Design Hamiltonian gadgets to embed “nice” objective into optimal product state.

• That objective defines a variant of Vector Max-Cut, which we show is NP-complete.



Questions?



Analyzing product state energies

As a warmup, consider the example 2-qubit term
𝐻 = 𝑋 ⊗ 𝑋 + 𝑌 ⊗ 𝑌 + 𝑍 ⊗ 𝑍

where 𝑋, 𝑌, 𝑍 are the Pauli matrices.

𝑋 =
0 1
1 0

, 𝑌 =
0 −𝑖
𝑖 0

, 𝑍 =
1 0
0 −1

, I =
1 0
0 1

is a basis for 2 × 2 Hermitian matrices



Analyzing product state energies

As a warmup, consider the example 2-qubit term
𝐻 = 𝑋𝑋 + 𝑌𝑌 + 𝑍𝑍

where 𝑋, 𝑌, 𝑍 are the Pauli matrices.

Write states using Bloch vectors:

𝜌𝑎 =
1

2
𝐼 + 𝑎1𝑋 + 𝑎2𝑌 + 𝑎3𝑍 , ො𝑎 ∈ ℝ3, ො𝑎 = 1

Then

Tr 𝐻 𝜌𝑎𝜌𝑏 =
1

4
σ𝑖𝑗 𝑎𝑖𝑏𝑗  Tr 𝐻 𝜎𝑖𝜎𝑗   for 𝜎𝑖 ∈ {𝑋, 𝑌, 𝑍, 𝐼}

Cross terms disappear!

Tr 𝐻𝜎𝑖𝜎𝑗 ≠ 0 iff Tr 𝐻𝜎𝑖𝜎𝑗 = Tr 𝐼𝐼 , which requires 𝑖 = 𝑗



Analyzing product state energies

As a warmup, consider the example 2-qubit term
𝐻 = 𝑋𝑋 + 𝑌𝑌 + 𝑍𝑍

where 𝑋, 𝑌, 𝑍 are the Pauli matrices.

Write states using Bloch vectors:

𝜌𝑎 =
1

2
(𝐼 + 𝑎1𝑋 + 𝑎2𝑌 + 𝑎3𝑍) ො𝑎 ∈ ℝ3, ො𝑎 = 1

Cross terms disappear!

Tr 𝐻 𝜌𝑎𝜌𝑏 =
1

4
Tr 𝑎1𝑏1𝑋𝑋 ⋅ 𝑋𝑋 + 𝑎2𝑏2𝑌𝑌 ⋅ 𝑌𝑌 + 𝑎3𝑏3𝑍𝑍 ⋅ 𝑍𝑍

= 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 = ෝ𝒂 ⋅ 𝒃



Analyzing product state energies

𝐻 = 𝑋𝑋 + 𝑌𝑌 + 𝑍𝑍
Tr 𝐻 𝜌𝑎𝜌𝑏 = ෝ𝒂 ⋅ 𝒃

Product state problems become optimization problems over Bloch 
vectors!

{𝐻}-prodLH is equivalent to optimizing sums of inner products:



𝑢𝑣∈𝐸

𝑤𝑢𝑣 𝑢 ⋅ 𝑣

over unit vectors 𝑢, 𝑣 ∈ ℝ3



General product state energies

Write an arbitrary 2-qubit term in the Pauli basis:

𝐻 = 

𝑖,𝑗=1

3

𝑀𝑖𝑗𝜎𝑖 ⊗ 𝜎𝑗 + 

𝑘=1

3

𝑐𝑘𝜎𝑘 ⊗ 𝐼 + 𝑤𝑘𝐼 ⊗ 𝜎𝑘

Then
Tr 𝐻 𝜌𝑢𝜌𝑣 = ො𝑢𝑇M ො𝑣 + ො𝑢𝑇 Ƹ𝑐 + ො𝑣𝑇 ෝ𝑤

3 × 3 matrix 𝑀               vectors   Ƹ𝑐            ෝ𝑤 



General product state energies

Tr 𝐻 𝜌𝑢𝜌𝑣 = ො𝑢𝑇M ො𝑣 + ො𝑢𝑇 Ƹ𝑐 + ො𝑣𝑇 ෝ𝑤

For a general 2-qubit 𝐻, we still have a sum of inner products,

 but with extra terms

 and warped by extra coefficients

Can we make this “nicer”?



Hamiltonian gadgets



Trick 1: Symmetrize

In general, the orientation of interactions matters: 𝐻𝑎𝑏 ≠ 𝐻𝑏𝑎.

It eases analysis if the term is symmetric.

From now on, if we apply 𝐻 to qubits 𝑎, 𝑏, we apply it in both 
directions:

𝐻𝑠𝑦𝑚 =  𝐻𝑎𝑏 + 𝐻𝑏𝑎 =  𝐻𝑎𝑏 + SWAP 𝐻𝑎𝑏 SWAP

𝐻𝑠𝑦𝑚 = 

𝑖,𝑗=1

3

𝑀′𝑖𝑗𝜎𝑖 ⊗ 𝜎𝑗 + 

𝑘=1

3

𝑐𝑘 + 𝑤𝑘 𝜎𝑘 ⊗ 𝐼 + 𝐼 ⊗ 𝜎𝑘

Since 𝐻𝑠𝑦𝑚 is symmetric, 𝑀′ is 

symmetric, and we can analyze 
assuming

𝑀′ =
𝛼

𝛽

𝛾



Trick 2: Delete 1-local terms

𝐻𝑠𝑦𝑚 = 

𝑖=1

3

𝑀′𝑖𝑖𝜎𝑖 ⊗ 𝜎𝑖 + 

𝑘=1

3

𝑐𝑘 + 𝑤𝑘 𝜎𝑘 ⊗ 𝐼 + 𝐼 ⊗ 𝜎𝑘

Tr 𝐻 𝜌𝑢𝜌𝑣 = ො𝑢𝑇𝑀′ ො𝑣 + Ƹ𝑐 + ෝ𝑤 𝑇( ො𝑢 + ො𝑣)

We borrow a nice gadget from [CM14]. 

To interact two qubits 𝑢, 𝑣, we add two ancilla qubits 𝑎, 𝑏:

 𝐺𝑢𝑣 = 𝐻𝑠𝑦𝑚
𝑢𝑣 + 𝐻𝑠𝑦𝑚

𝑎𝑏 − 𝐻𝑠𝑦𝑚
𝑢𝑎 − 𝐻𝑠𝑦𝑚

𝑣𝑏

Negative weights cause all the 1-local terms to cancel



Result of Trick 2

𝐻𝑠𝑦𝑚 = 

𝑖=1

3

𝑀′𝑖𝑖𝜎𝑖 ⊗ 𝜎𝑖 + 

𝑘=1

3

𝑐𝑘 + 𝑤𝑘 𝜎𝑘 ⊗ 𝐼 + 𝐼 ⊗ 𝜎𝑘

To interact two qubits 𝑢, 𝑣, we add two ancilla qubits 𝑎, 𝑏:

 𝐺𝑢𝑣 = 𝐻𝑠𝑦𝑚
𝑢𝑣 + 𝐻𝑠𝑦𝑚

𝑎𝑏 − 𝐻𝑠𝑦𝑚
𝑢𝑎 − 𝐻𝑠𝑦𝑚

𝑣𝑏  

= ⋯ ⋯ ⋯

Then,

Tr 𝐺𝑢𝑣 𝜌𝑢𝜌𝑣𝜌𝑎𝜌𝑏  = ෝ𝒖 − ෝ𝒗 𝑻𝑴′(ෝ𝒂 − 𝒃)

𝑀′ =
𝛼

𝛽

𝛾Bloch vectors



Result of tricks

𝐻𝑠𝑦𝑚 = 

𝑖=1

3

𝑀′𝑖𝑖𝜎𝑖 ⊗ 𝜎𝑖 + 

𝑘=1

3

𝑐𝑘 + 𝑤𝑘 𝜎𝑘 ⊗ 𝐼 + 𝐼 ⊗ 𝜎𝑘

To interact two qubits 𝑢, 𝑣, we add two ancilla qubits 𝑎, 𝑏,
and construct gadget 𝐺.
Tr 𝐺𝑢𝑣 𝜌𝑢𝜌𝑣𝜌𝑎𝜌𝑏  = ො𝑢 − ො𝑣 𝑇𝑀′( ො𝑎 − 𝑏)

Given 𝑢, 𝑣 are constrained, what is the minimum value of ො𝑢 − ො𝑣 𝑇𝑀′( ො𝑎 − 𝑏)?

Qubits 𝑎, 𝑏 are free, each become proportional to −𝑀′( ො𝑢 − ො𝑣),

So minimum value is… −2 ො𝑢 − ො𝑣 𝑇𝑀′′ 𝑀′′ ෝ𝑢−ො𝑣

𝑀′′ ෝ𝑢−ො𝑣
= −𝟐 𝑴′′(ෝ𝒖 − ෝ𝒗)       for 𝑀′′ = 𝑀′  

ො𝑢
ො𝑣

ො𝑢 − ො𝑣

𝑀′( ො𝑢 − ො𝑣)

−𝑀′( ො𝑢 − ො𝑣)

Stop thinking about inner products… Start thinking about distances



Result of tricks

Using only a given term 𝐻 ∈ 𝑆,

Construct a Hamiltonian 𝐻final = σ𝑢𝑣 𝐺𝑢𝑣,

Such that the minimum energy of a product state is 

min
𝜌=𝜌1𝜌2…𝜌𝑛

 Tr 𝐻final 𝜌1 … 𝜌𝑛

= min
ෝ𝑢 =1



𝑢𝑣

−2 𝑀′′( ො𝑢 − ො𝑣)  =  −2 max
ෝ𝑢 =1



𝑢𝑣

𝑀′′( ො𝑢 − ො𝑣)

Call this sufficiently “nice”, and try to prove such a function is NP-hard.



Vector Max-Cut Problems
All classical TCS from here – no more quantum



Max-Cut

          MC 𝐺  =
1

2
 max

Ƹ𝑖=±1
σ𝑖𝑗∈𝐸 1 − Ƹ𝑖 Ƹ𝑗

    =
1

2
 max

Ƹ𝑖=±1
σ𝑖𝑗∈𝐸 Ƹ𝑖 − Ƹ𝑗

Max-Cut

-1   +1



Max-Cut

          MC 𝐺  =
1

2
 max

Ƹ𝑖=±1
σ𝑖𝑗∈𝐸 1 − Ƹ𝑖 Ƹ𝑗

    =
1

2
 max

Ƹ𝑖=±1
σ𝑖𝑗∈𝐸 Ƹ𝑖 − Ƹ𝑗

Vector Max-Cut

         MC𝑘 𝐺  =
1

2
 max

Ƹ𝑖=𝑆𝑘−1
σ𝑖𝑗∈𝐸 1 − Ƹ𝑖 Ƹ𝑗

    =
1

4
 max

Ƹ𝑖=𝑆𝑘−1
σ𝑖𝑗∈𝐸 Ƹ𝑖 − Ƹ𝑗 2

Intuition: Embed a graph onto unit sphere 𝑆𝑘−1 in ℝ𝑘 to maximize the sum of the 
squared distances

Vector Max-Cut



Stretched linear Vector Max-Cut

For 𝑊 =
𝛼

𝛽

𝛾
 a fixed diagonal matrix,

given a graph 𝐺 = (𝑉, 𝐸),

estimate 

MC𝑊
L 𝐺 =

1

2
max

ෝ𝑢∈𝑆𝑘−1


𝑢𝑣∈𝐸

𝑊 ො𝑢 − 𝑊 ො𝑣

Intuition: Embed a graph onto unit sphere ellipsoid in ℝ𝑘 to maximize 
the sum of the squared distances



Stretched linear Vector Max-Cut is NP-hard

Theorem: For any fixed non-negative nonzero 𝑊 = diag 𝛼, 𝛽, 𝛾 ,

MC𝑊
L  is NP-complete.

Earlier, we showed how to reduce an instance of MC𝑊
L  to 𝑆-prodLH.

✓So, this theorem will complete our main result: 𝑆-prodLH is NP-hard.



Proof sketch 1

Theorem: For any fixed non-negative nonzero 𝑊 = diag 𝛼, 𝛽, 𝛾 ,

MC𝑊
L  is NP-complete.

If 𝛼 > 𝛽, 𝛾, we can use a simple construction:

• Given graph 𝐺, construct 𝐺′ by adding large star gadgets

The star gadgets amplify the length of vectors assigned to the centers.

To maximize the lengths, vectors must live in 1 dimension.

→ Reduction from standard Max-Cut



Proof sketch 2

Theorem: For any fixed non-negative nonzero 𝑊 = diag 𝛼, 𝛽, 𝛾 ,

MC𝑊
L  is NP-complete.

If 𝛼 ≯ 𝛽, 𝛾, we use a lengthier, but easy-to-analyze, construction.

1. Given graph 𝐺, construct a new graph 𝐺′ by replacing each edge 
with a 3-clique (triangle) gadget.



Proof sketch 2

2. Observe that maximizing the total distance between the vectors in a 
3-clique is equivalent to picking 3 points on an ellipsoid which 
inscribe a triangle with maximum perimeter.



Proof sketch 2

3. Use the fact that maximum perimeter inscribed triangles are 
(somewhat) unique.

Circle, Ellipse, Ellipsoid: fix any 1 point, 
there is exactly 1 max perimeter 
triangle.

Centroid: must fix 2 points to fully 
determine max perimeter triangle.



Proof sketch 2

4. Every 3-clique gadget shares a vertex with another 3-clique gadget.

a) So, every gadget is assigned at least 1 vector shared with 
another gadget.

b) Given 1 fixed point, there’s a unique pair of other points giving 
maximum length…

5. Conclude that 𝐺′ can maximally satisfy every 3-clique gadget
iff the same set of 3 optimal vectors can be assigned to all 3-cliques.

The NP-complete 3-Coloring problem reduces to the Stretched linear 
Vector Max-Cut problem.  □



Summary of proof of 
main theorem



Proof summary

Main Theorem

For any fixed set of 2-qubit Hamiltonian terms 𝑆,

➢if every matrix in 𝑆 is 1-local then 𝑆-prodLH is in P,

➢and otherwise 𝑆-prodLH is NP-complete.

✓If every term is 1-local, then we can optimize the state of each qubit 
individually, so the problem is in P.

✓prodLH is always contained in NP, using product states’ concise classical 
descriptions Tr 𝐻𝜌 = σ𝑖𝑗 Tr(𝐻𝑖𝑗  𝜌𝑖𝜌𝑗)

❑To Do: show if 𝑆 contains a nontrivial 2-qubit term, then 𝑆-prodLH is NP-hard.



Proof summary

❑To Do: show if 𝑆 contains a nontrivial 2-qubit term, then 𝑆-prodLH is 
NP-hard.

• Product state problems can be viewed as optimization over single-
qubit Bloch vectors.

• Given an arbitrary non-trivial 2-qubit term, we construct gadgets to 
make the product state energy “nice”.

• Call this new objective value Stretched linear Vector Max Cut (MC𝑊
L ).

• Show MC𝑊
L  is NP-complete by reductions from 3-coloring or Max-Cut.



What’s next?

1. Can we use the complexity of product state problems to suggest the 
general ground states of a class of Hamiltonians are not hard?
 

2. Classify S-prodLH with additional restrictions, e.g. only positive 
weights, spatial geometry?

3. Hamiltonian Constrained-Optimization problems, 
e.g. Quantum Vertex Cover
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Main Theorem: For any fixed set of 2-qubit Hamiltonian terms 𝑆,

• if every matrix in 𝑆 is 1-local then 𝑆-prodLH is in P, 

• and otherwise 𝑆-prodLH is NP-complete.

Corollary: For any fixed set of 2-qubit Hamiltonian terms 𝑆,

• the problem 𝑆-LH is at least NP-hard iff 𝑆-prodLH is NP-complete.

• the problem 𝑆-LH is in P iff 𝑆-prodLH is in P.
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