

On

Complexity Classification of Product State Problems for Local Hamiltonians

On

Complexity Classification of Product State Problems for Local Hamiltonians

On

Complexity Classification of Product State Problems for Local Hamiltonians

On

Complexity Classification of Product State Problems for Local Hamiltonians

On

Complexity Classification of Product State Problems for Local Hamiltonians

Hamiltonians

An *n*-qubit **Hamiltonian** is a $2^n \times 2^n$ Hermitian matrix.

It encodes constraints, interactions, or "rules" of a physical system, its eigenvectors correspond to physical states of the system, and its eigenvalues are the energies of those states.

 $\langle \psi | H | \psi \rangle = \lambda$

n-qubit state \leftrightarrow Vector in \mathbb{C}^{2^n} with $||v||_2 = 1$

State $|v\rangle \leftrightarrow$ Vector v

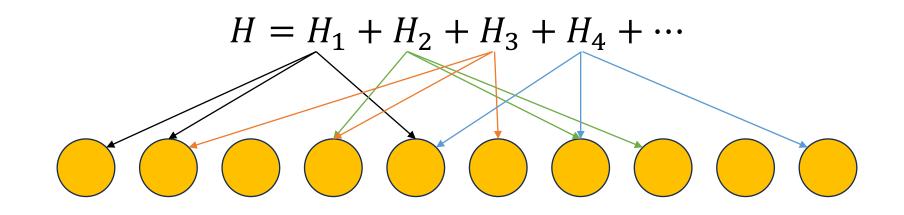
 $\langle v | \leftrightarrow \text{Row vector } v^{T^*}$

State $\rho \leftrightarrow$ Outer product $|v\rangle\langle v| = v_i^{T^*}v_i$ Tensor product $\otimes \leftrightarrow$ "Multiplying" spaces i.e. $\mathbb{R}^4 \otimes \mathbb{R}^4 = \mathbb{R}^{16}$

Local Hamiltonians

A **k-local Hamiltonian** is a sum of Hamiltonian terms each acting on at most k qubits

$$H = \sum_{i} H_{S_i} \otimes \mathbb{I}_{\overline{S_i}} \qquad |S_i| \le k$$



k-LH

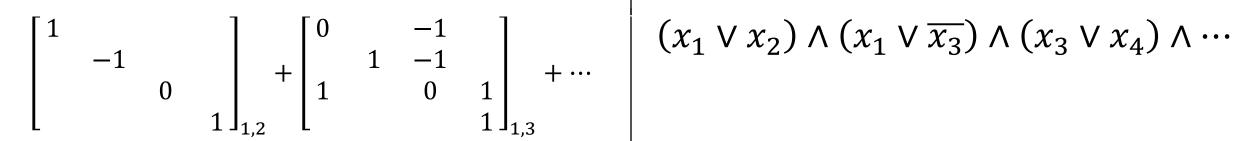
The *k***-LH problem** is, given a *k*-local Hamiltonian, estimate its minimum eigenvalue, a.k.a. its **ground state energy**.

Formally: decide if $\lambda_{\min} < a$ (YES) or $\lambda_{\min} > b$ (NO) for $b - a \ge \frac{1}{\operatorname{poly}(n)}$.

Hamiltonian

k-local Hamiltonian

k-LH



Boolean formula k-CNF k-Max-SAT $(x_1 \lor x_2) \land (x_1 \lor \overline{x_3}) \land (x_3 \lor x_4) \land \cdots$

Complexity

k-Max-SAT is NP-complete for $k \ge 2$ Similarly, *k*-LH is QMA-complete for $k \ge 2$

Hardness is subtle, though.

Goal: Characterize the complexity of *k*-LH when the problem is restricted to various subsets of Hamiltonians

Just enumerating sets of Hamiltonians seems...

- tedious
- uninformative what's the underlying structure?
- difficult

So we consider sets of families defined by interesting properties

S-LH

Let a Hamiltonian **family** be defined by the allowed interactions, i.e. by the allowed k-qubit terms.

For a fixed set S of allowed terms/allowed interactions, the **S-LH problem** is k-LH with the additional promise/restriction that any input is of the form

 $H = \sum_{i} w_{i} H_{i}$ with each $H_{i} \in S$

(we will focus on sets S of 2-qubit, 4×4 , terms)

S-LH

For a fixed set S of allowed terms/allowed interactions, the **S-LH problem** is k-LH with the additional promise/restriction that any input is of the form

 $H = \sum_{i} w_{i} H_{i}$ with each $H_{i} \in S$

- S-LH with $S = \{X \otimes X + Y \otimes Y + Z \otimes Z\}$ is the Quantum Max-Cut problem.
- Classically, $\{\neq\}$ -Max-SAT is Max-Cut.
- {2-Out-of-4}-SAT is NP-complete, used in *The Power of Unentanglement* [ABDSF 08]

Complexity classification

We're interested in classifying the complexity of *S*-LH *as a function of* the set *S* of allowed terms.

Detour:

Complexity classifications of constraint satisfaction problems (CSPs) as a function of the allowed constraints

Complexity classification of CSPs

The complexity of satisfiability problems, Schaefer, 1976

WIKIPEDIA Ihe Free Encyclopedia	Q Search Wikipedia	Search					
	Schaefer's dichotomy theorem 🌣 1 languag					nguage 🗸	
ide	Article Talk			Read	Edit	View history	Tools 🗸
ntation	From Wikipedia, the free encyclopedia	cience. Schaefer's d	chotomy theorem, proved	by Thomas J	erome	Schaefer state	es
ntation Polymorphisms 15	necessary and sufficient conditions under which a finite set S of relations over the Boolean domain yields polynomial-time or NP-complete problems when the relations of S are used to constrain some of the propositional variables. ^[1] It is called a dichotomy theorem because the complexity of the problem defined by S is either in P or is NP-complete, as opposed to one of the classes of intermediate complexity that is known to exist (assuming P \neq NP) by Ladner's theorem.						
	Special cases of Schaefer's dichotomy theorem include the NP-completeness of SAT (the Boolean satisfiability problem) and its two popular variants 1- in-3 SAT and not-all-equal 3SAT (often denoted by NAE-3SAT). In fact, for these two variants of SAT, Schaefer's dichotomy theorem shows that their monotone versions (where negations of variables are not allowed) are also NP-complete.						
	Original presentation [edit] Schaefer defines a decision problem that he calls the Gene set of relations over the binary domain {0, 1}. An instance						

Complexity classification of CSPs

Schaefer's dichotomy theorem, 1976:

Given any fixed set S of allowed Boolean constraints,

deciding satisfiability of a formula

$$f(x_1, x_2, \dots, x_n) = \Lambda_i C_i \text{ for } C_i \in S$$

a.k.a. *S*-SAT

✤is in P if any of some simple conditions is true,

and otherwise is NP-complete.

a) "Every relation in S is 0-valid

- b) Every relation in S is 1-valid
- c) Every relation in S is weakly positive
- d) Every relation in S is weakly negative
- e) Every relation in S is affine
- f) Every relation in S is bijunctive "

Complexity classification of CSPs

- [Schaefer 1976] classifies S-SAT
- [Creignou 95] with [Khanna, Sudan, Williamson 97] classify S-Max-SAT
- [Jonsson 00] classifies S-Max-SAT with positive & negative weights.
- [Jonsson, Klasson, Krokhin 06] and [Thapper, Živný 16] extends this to non-binary variables.
 - (Only positive weights)

End of detour, back to quantum

Complexity classification of *S*-LH

[Cubitt, Montanaro 13] classify S-LH for all sets S of 2-qubit terms: Given a fixed set S of 2-qubit Hamiltonian terms, S-LH is either in P, or is NP-, StoqMA-, or QMA-complete.

• If every matrix in *S* is 1-local, *S*-LH is in P;

• Otherwise, if there exists *U* ∈ *SU*(2) such that *U* locally diagonalises *S*, then *S*-LH is NP-complete;

• Otherwise, if there exists $U \in SU(2)$ such that, for each 2-qubit matrix $H_i \in S, U^{\otimes 2}H_iU^{\dagger \otimes 2} = \alpha_i Z^{\otimes 2} + A_i \otimes I + I \otimes B_i$

where $\alpha_i \in \mathbb{R}$ and A_i, B_i are arbitrary single-qubit Hermitian matrices, then S-LH is StoqMA-complete;

• Otherwise, *S*-LH is QMA-complete. [Bravyi, Hastings 2014]

What about product states?

What about product states?

We have a full classification of *S*-LH for 2-qubit terms, i.e. estimating the minimum eigenvalue.

What about other Hamiltonian problems?

- Other ground state properties
- Constrained optimization
- Thermal limit
- •
- Product states

Product states

A **product state** is an unentangled tensor product of single-qubit states $\rho = \rho_1 \otimes \rho_2 \otimes \rho_3 \otimes \cdots \otimes \rho_n$

• Product states can be described efficiently classically.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \otimes \begin{bmatrix} e & f \\ g & h \end{bmatrix} \otimes \begin{bmatrix} i & j \\ k & l \end{bmatrix} \otimes \cdots \otimes \begin{bmatrix} w & x \\ y & z \end{bmatrix}$$

Product states

A **product state** is an unentangled tensor product of single-qubit states $\rho = \rho_1 \otimes \rho_2 \otimes \rho_3 \otimes \cdots \otimes \rho_n$

- Product states can be described efficiently classically.
- They're intermediate between classical and general quantum states.
- For many natural sets of Hamiltonians, product states are rigorously near-optimal.
 - [Brandao, Harrow 13]: "High"-degree Hamiltonians' ground states are close to product states (monogamy of entanglement!)
- They're a popular ansatz in classical Hamiltonian approximation algorithms

Product state problems

A **product state** is an unentangled tensor product of single-qubit states $\rho = \rho_1 \otimes \rho_2 \otimes \rho_3 \otimes \cdots \otimes \rho_n$

k-LH \rightarrow **prodLH**

given a local Hamiltonian, estimate the minimum energy over all product states:

 $\min_{\rho=\rho_1\rho_2\dots\rho_n} \operatorname{Tr}(H\rho)$

 $S\text{-LH} \rightarrow S\text{-prodLH}$

the problem prodLH restricted to $H = \sum_i w_i H_i$ with $H_i \in S$.

Main Theorem

Drum roll...

Complexity classification of product state problems

Main Theorem

For any fixed set of 2-qubit Hamiltonian terms S,

 \succ if every matrix in S is 1-local then S-prodLH is in P,

➤and otherwise S-prodLH is NP-complete.

Corollary

For any fixed set of 2-qubit Hamiltonian terms *S*,

- the problem S-LH is at least NP-hard iff S-prodLH is NP-complete.
- the problem *S*-LH is in P iff *S*-prodLH is in P.

Proof outline

Main Theorem

For any fixed set of 2-qubit Hamiltonian terms S,

 \succ if every matrix in S is 1-local then S-prodLH is in P,

➤and otherwise S-prodLH is NP-complete.

✓ If every term is 1-local, then we can optimize the state of each qubit individually, so the problem is in P.

✓ prodLH is always contained in NP, using product states' concise classical descriptions $Tr(H\rho) = \sum_{ij} Tr(H_{ij} \rho_i \rho_j)$

To Do: show if *S* contains a nontrivial 2-qubit term, then *S*-prodLH is NP-hard.

- Design Hamiltonian gadgets to embed "nice" objective into optimal product state.
- That objective defines a variant of Vector Max-Cut, which we show is NP-complete.

Questions?

As a warmup, consider the example 2-qubit term $H = X \otimes X + Y \otimes Y + Z \otimes Z$

where X, Y, Z are the Pauli matrices.

$$\left\{X = \begin{bmatrix}0 & 1\\1 & 0\end{bmatrix}, Y = \begin{bmatrix}0 & -i\\i & 0\end{bmatrix}, Z = \begin{bmatrix}1 & 0\\0 & -1\end{bmatrix}, I = \begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}\right\}$$

is a basis for 2×2 Hermitian matrices

As a warmup, consider the example 2-qubit term H = XX + YY + ZZ

where X, Y, Z are the Pauli matrices.

Write states using **Bloch vectors**:

$$\rho^{a} = \frac{1}{2}(I + a_{1}X + a_{2}Y + a_{3}Z), \qquad \hat{a} \in \mathbb{R}^{3}, |\hat{a}| = 1$$

Then

 $Tr(H \rho^{a} \rho^{b}) = \frac{1}{4} \sum_{ij} a_{i} b_{j} Tr[H \sigma_{i} \sigma_{j}] \qquad \text{for } \sigma_{i} \in \{X, Y, Z, I\}$ Cross terms disappear! $Tr[H\sigma_{i}\sigma_{j}] \neq 0 \text{ iff } Tr[H\sigma_{i}\sigma_{j}] = Tr[II], \text{ which requires } i = j$

As a warmup, consider the example 2-qubit term H = XX + YY + ZZ

where X, Y, Z are the Pauli matrices.

Write states using **Bloch vectors**:

$$\rho^{a} = \frac{1}{2}(I + a_{1}X + a_{2}Y + a_{3}Z) \qquad \hat{a} \in \mathbb{R}^{3}, |\hat{a}| = 1$$
Cross terms disappear!
$$Tr(H \ \rho^{a}\rho^{b}) = \frac{1}{4}Tr[a_{1}b_{1}XX \cdot XX + a_{2}b_{2}YY \cdot YY + a_{3}b_{3}ZZ \cdot ZZ]$$

$$= a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3} = \hat{a} \cdot \hat{b}$$

$$H = XX + YY + ZZ$$

Tr $(H \ \rho^{a}\rho^{b}) = \hat{a} \cdot \hat{b}$

Product state problems become optimization problems over Bloch vectors!

 $\{H\}$ -prodLH is equivalent to optimizing sums of inner products:

$$\sum_{uv \in E} w_{uv} \, u \cdot v$$
 over unit vectors $u, v \in \mathbb{R}^3$

General product state energies

Write an arbitrary 2-qubit term in the Pauli basis: $H = \sum_{i,j=1}^{3} M_{ij}\sigma_i \otimes \sigma_j + \sum_{k=1}^{3} c_k\sigma_k \otimes I + w_k I \otimes \sigma_k$ $3 \times 3 \text{ matrix } M \quad \text{vectors } \hat{c} \quad \hat{w}$

Then

$$Tr(H \ \rho^{u} \rho^{v}) = \hat{u}^{T} M \hat{v} + \hat{u}^{T} \hat{c} + \hat{v}^{T} \hat{w}$$

General product state energies

$$Tr(H \ \rho^{u} \rho^{v}) = \hat{u}^{T} M \hat{v} + \hat{u}^{T} \hat{c} + \hat{v}^{T} \hat{w}$$

For a general 2-qubit *H*, we still have a sum of inner products, but with extra terms and warped by extra coefficients

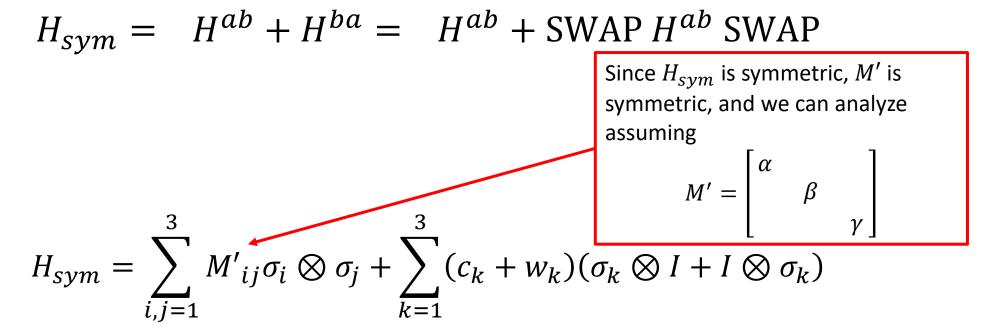
Can we make this "nicer"?

Hamiltonian gadgets

Trick 1: Symmetrize

In general, the orientation of interactions matters: $H^{ab} \neq H^{ba}$. It eases analysis if the term is symmetric.

From now on, if we apply H to qubits a, b, we apply it in both directions:



Trick 2: Delete 1-local terms

$$H_{sym} = \sum_{i=1}^{3} M'_{ii} \sigma_i \otimes \sigma_i + \sum_{k=1}^{3} (c_k + w_k) (\sigma_k \otimes I + I \otimes \sigma_k)$$

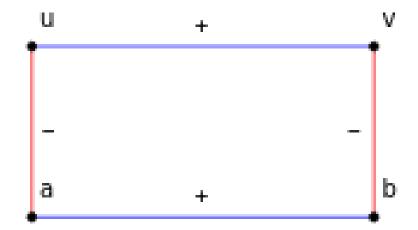
$$\operatorname{Tr}(H \ \rho^{u} \rho^{v}) = \hat{u}^{T} M' \hat{v} + (\hat{c} + \hat{w})^{T} (\hat{u} + \hat{v})$$

We borrow a nice gadget from [CM14].

To interact two qubits *u*, *v*, we add two ancilla qubits *a*, *b*:

$$G^{uv} = H^{uv}_{sym} + H^{ab}_{sym} - H^{ua}_{sym} - H^{vb}_{sym}$$

Negative weights cause all the 1-local terms to cancel



Result of Trick 2

$$H_{sym} = \sum_{i=1}^{3} M'_{ii} \sigma_i \otimes \sigma_i + \sum_{k=1}^{3} (c_k + w_k) (\sigma_k \otimes I + I \otimes \sigma_k)$$

To interact two qubits *u*, *v*, we add two ancilla qubits *a*, *b*:

$$G^{uv} = H^{uv}_{sym} + H^{ab}_{sym} - H^{ua}_{sym} - H^{vb}_{sym}$$

Then,

$$\operatorname{Tr}[G^{uv} \rho_u \rho_v \rho_a \rho_b] = (\widehat{u} - \widehat{v})^T M' (\widehat{a} - \widehat{b})$$

$$M' = \begin{bmatrix} \alpha & & \\ & \beta & \\ & & \end{bmatrix}$$
Bloch vectors

Result of tricks

$$H_{sym} = \sum_{i=1}^{3} M'_{ii} \sigma_i \otimes \sigma_i + \sum_{k=1}^{3} (c_k + w_k) (\sigma_k \otimes I + I \otimes \sigma_k)$$

To interact two qubits u, v, we add two ancilla qubits a, b, and construct gadget G. Tr $[G^{uv} \rho_u \rho_v \rho_a \rho_h] = (\hat{u} - \hat{v})^T M'(\hat{a} - \hat{b})$

Given u, v are constrained, what is the minimum value of $(\hat{u} - \hat{v})^T M'(\hat{a} - \hat{b})$? Qubits a, b are free, each become proportional to $-M'(\hat{u} - \hat{v})$,

So minimum value is... $-2(\hat{u}-\hat{v})^T M'' \frac{M''(\hat{u}-\hat{v})}{\|M''(\hat{u}-\hat{v})\|} = -2\|M''(\hat{u}-\hat{v})\|$ for M'' = |M'|

Stop thinking about inner products...

Start thinking about distances

Result of tricks

Using only a given term $H \in S$,

Construct a Hamiltonian $H_{\text{final}} = \sum_{uv} G^{uv}$,

Such that the minimum energy of a product state is

$$\min_{\rho=\rho_1\rho_2\dots\rho_n} \operatorname{Tr}[H_{\text{final}}\rho_1\dots\rho_n]$$

$$= \min_{|\hat{u}|=1} \sum_{uv} -2\|M''(\hat{u}-\hat{v})\| = -2 \max_{|\hat{u}|=1} \sum_{uv} \|M''(\hat{u}-\hat{v})\|$$

Call this sufficiently "nice", and try to prove such a function is NP-hard.

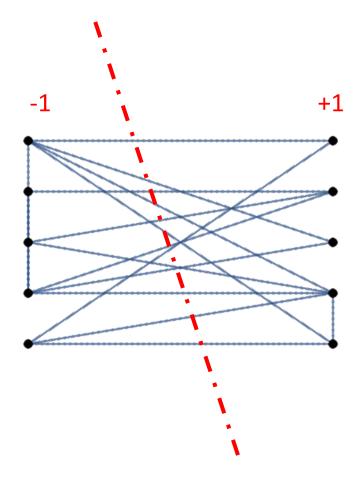
Vector Max-Cut Problems

All classical TCS from here – no more quantum

Max-Cut

Max-Cut

$$MC(G) = \frac{1}{2} \max_{\hat{i}=\pm 1} \sum_{ij\in E} 1 - \hat{i}\hat{j}$$
$$= \frac{1}{2} \max_{\hat{i}=\pm 1} \sum_{ij\in E} |\hat{i} - \hat{j}|$$



Vector Max-Cut

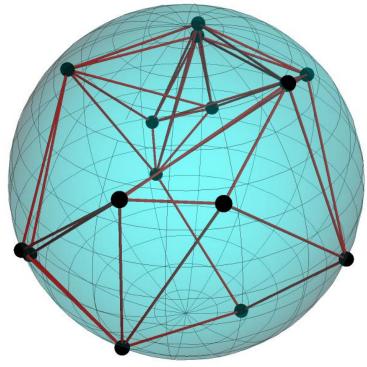
Max-Cut

$$MC(G) = \frac{1}{2} \max_{\hat{i}=\pm 1} \sum_{ij\in E} 1 - \hat{i}\hat{j}$$
$$= \frac{1}{2} \max_{\hat{i}=\pm 1} \sum_{ij\in E} |\hat{i} - \hat{j}|$$

Vector Max-Cut

$$MC_{k}(G) = \frac{1}{2} \max_{\hat{i}=S^{k-1}} \sum_{ij\in E} 1 - \hat{i}\hat{j}$$
$$= \frac{1}{4} \max_{\hat{i}=S^{k-1}} \sum_{ij\in E} \|\hat{i} - \hat{j}\|^{2}$$

Intuition: Embed a graph onto unit sphere S^{k-1} in \mathbb{R}^k to maximize the sum of the squared distances



Stretched linear Vector Max-Cut

For
$$W = \begin{bmatrix} \alpha & & \\ & \beta & \\ & & \gamma \end{bmatrix}$$
 a fixed diagonal matrix,

given a graph G = (V, E),

estimate

$$\mathsf{MC}_W^{\mathsf{L}}(G) = \frac{1}{2} \max_{\widehat{u} \in S^{k-1}} \sum_{uv \in E} \|W\widehat{u} - W\widehat{v}\|$$

Intuition: Embed a graph onto unit sphere ellipsoid in \mathbb{R}^k to maximize the sum of the squared distances

Stretched linear Vector Max-Cut is NP-hard

<u>**Theorem</u></u>: For any fixed non-negative nonzero W = \text{diag}(\alpha, \beta, \gamma), MC_W^L is NP-complete.</u>**

Earlier, we showed how to reduce an instance of MC_W^L to S-prodLH.

 \checkmark So, this theorem will complete our main result: S-prodLH is NP-hard.

<u>**Theorem</u></u>: For any fixed non-negative nonzero W = \text{diag}(\alpha, \beta, \gamma), MC^L_W is NP-complete.</u>**

- If $\alpha > \beta$, γ , we can use a simple construction:
- Given graph G, construct G' by adding large star gadgets

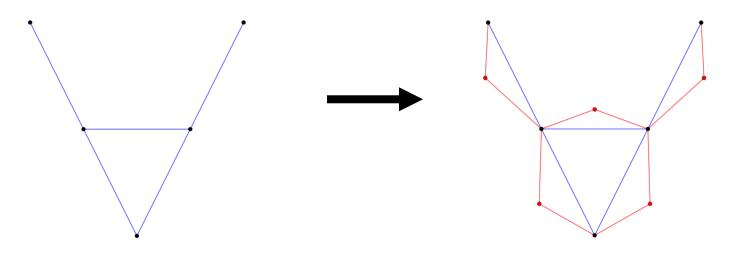
The star gadgets *amplify* the length of vectors assigned to the centers... To maximize the lengths, vectors must live in 1 dimension.

 \rightarrow Reduction from standard Max-Cut

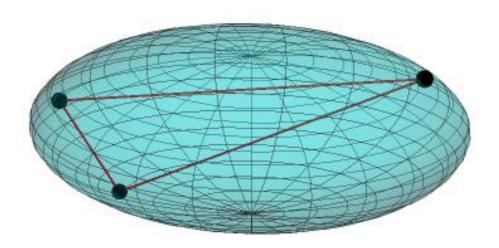
<u>**Theorem</u></u>: For any fixed non-negative nonzero W = \text{diag}(\alpha, \beta, \gamma), MC_W^L is NP-complete.</u>**

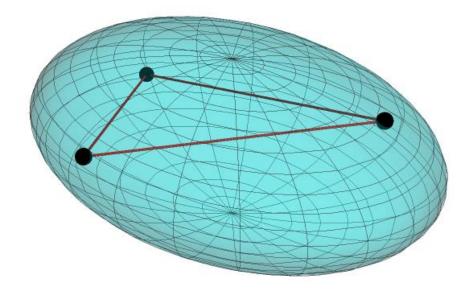
If $\alpha \geq \beta$, γ , we use a lengthier, but easy-to-analyze, construction.

1. Given graph G, construct a new graph G' by replacing each edge with a 3-clique (triangle) gadget.

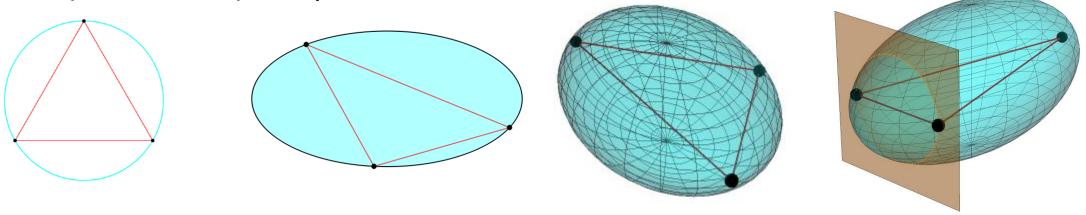


 Observe that maximizing the total distance between the vectors in a 3-clique is equivalent to picking 3 points on an ellipsoid which inscribe a triangle with maximum perimeter.





3. Use the fact that maximum perimeter inscribed triangles are (somewhat) unique.



<u>Circle, Ellipse, Ellipsoid</u>: fix any 1 point, there is exactly 1 max perimeter triangle. <u>Centroid</u>: must fix **2** points to fully determine max perimeter triangle.

- 4. Every 3-clique gadget shares a vertex with another 3-clique gadget.
 - a) So, every gadget is assigned at least 1 vector shared with another gadget.
 - b) Given 1 fixed point, there's a unique pair of other points giving maximum length...
- 5. Conclude that G' can maximally satisfy *every* 3-clique gadget iff the *same* set of 3 optimal vectors can be assigned to all 3-cliques.

The NP-complete **3-Coloring** problem reduces to the **Stretched linear Vector Max-Cut** problem. Summary of proof of main theorem

Proof summary

<u>Main Theorem</u>

For any fixed set of 2-qubit Hamiltonian terms S,

 \succ if every matrix in S is 1-local then S-prodLH is in P,

➤and otherwise S-prodLH is NP-complete.

✓ If every term is 1-local, then we can optimize the state of each qubit individually, so the problem is in P.

✓ prodLH is always contained in NP, using product states' concise classical descriptions $Tr(H\rho) = \sum_{ij} Tr(H_{ij} \rho_i \rho_j)$

To Do: show if *S* contains a nontrivial 2-qubit term, then *S*-prodLH is NP-hard.

Proof summary

To Do: show if *S* contains a nontrivial 2-qubit term, then *S*-prodLH is NP-hard.

- Product state problems can be viewed as optimization over singlequbit Bloch vectors.
- Given an arbitrary non-trivial 2-qubit term, we construct gadgets to make the product state energy "nice".
- Call this new objective value Stretched linear Vector Max Cut (MC_W^L).
- Show MC^L_W is NP-complete by reductions from 3-coloring or Max-Cut.

What's next?

- 1. Can we use the complexity of product state problems to suggest the general ground states of a class of Hamiltonians are *not* hard?
- 2. Classify S-prodLH with additional restrictions, e.g. only positive weights, spatial geometry?
- 3. Hamiltonian Constrained-Optimization problems, e.g. Quantum Vertex Cover

RPE JUSTIN YIRKA

On

Complexity Classification of Product State Problems for Local Hamiltonians

John Kallaugher, Ojas Parekh, Kevin Thompson, Yipu Wang, and Justin Yirka arXiv: 2401.06725, January 2024

Main Theorem: For any fixed set of 2-qubit Hamiltonian terms *S*,

- if every matrix in *S* is 1-local then *S*-prodLH is in P,
- and otherwise *S*-prodLH is NP-complete.

Corollary: For any fixed set of 2-qubit Hamiltonian terms S,

- the problem *S*-LH is at least NP-hard iff *S*-prodLH is NP-complete.
- the problem *S*-LH is in P iff *S*-prodLH is in P.