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Hamiltonians

An n-qubit Hamiltonian is a 2™ X 2™ Hermitian matrix.

It encodes constraints, interactions, or “rules” of a physical system,

its eigenvectors correspond to physical states of the system, and its
eigenvalues are the energies of those states.

(W|H|yY) = 2

n-qubit state <> Vector in C2" with v, =1
State |v) <> Vector v

(v| > Row vector v’
State p <> Outer product |[v){(v| = v v;
Tensor product @ €<> “Multiplying” spaces i.e. R* ® R* = R



Local Hamiltonians

A k-local Hamiltonian is a sum of Hamiltonian terms each acting on at
most k qubits

H=) Hy ®Ts, IS <k
l

H=H1+H2+H3+H4+

@%@%@@



k-LH

The k-LH problem is, given a k-local Hamiltonian, estimate its minimum
eigenvalue, a.k.a. its ground state energy.

Formally: decide if A,,i; < a (YES) or A,,in > b (NO) forb —a =

Hamiltonian

k-local Hamiltonian

k-LH
0 —1
—1 1 -1
0 * 1 0
1_1’2 s

41,3

1
poly(n)

Boolean formula
k-CNF
k-Max-SAT

(X1 Vx3) Axp VX)) A (X3 Vxy) A



Complexity

k-Max-SAT is NP-complete for k = 2
Similarly,  k-LH is QMA-complete for k = 2

Hardness is subtle, though.

Goal: Characterize the complexity of k-LH when the problem is
restricted to various subsets of Hamiltonians



Complexity

Just enumerating sets of Hamiltonians seems...
* tedious

* uninformative — what’s the underlying structure?
e difficult

So we consider sets of families defined by interesting properties



S-LH

Let a Hamiltonian family be defined by the allowed interactions, i.e. by
the allowed k-qubit terms.

For a fixed set S of allowed terms/allowed interactions,
the S-LH problem is k-LH with the additional promise/restriction that

any input is of the form
H =), w;H; with each H; € S

(we will focus on sets S of 2-qubit, 4 X 4, terms)




S-LH

For a fixed set S of allowed terms/allowed interactions,
the S-LH problem is k-LH with the additional promise/restriction that
any input is of the form

H =), w;H; with each H; € S

e S-LHwWithS ={X QX +Y XY +7Z & Z} is the Quantum Max-Cut
problem.

* Classically, {#}-Max-SAT is Max-Cut.

e {2-Out-of-4}-SAT is NP-complete,
used in The Power of Unentanglement [ABDSF 08]




Complexity classification

We're interested in classifying the complexity of S-LH as a function of
the set S of allowed terms.



Detour:

Complexity classifications of constraint satisfaction problems (CSPs) as a function of
the allowed constraints



Complexity classification of CSPs

The complexity of satisfiability problems, Schaefer, 1976
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From Wikipedia, the free encyclopedia

In computational complexity theory, a branch of computer science, Schaefer's dichotomy theorem, proved by Thomas Jerome Schaefer, states
necessary and sufficient conditions under which a finite set S of relations over the Boolean domain yields polynomial-time or NP-complete problems
when the relations of S are used to constrain some of the propositional variables ["! It is called a dichotomy theorem because the complexity of the
problem defined by S is either in P or is NP-complete, as opposed to one of the classes of intermediate complexity that is known to exist (assuming P #
MNP) by Ladner's theorem.

Special cases of Schaefer's dichotomy theorem include the NP-completeness of SAT (the Boolean satisfiability problem) and its two popular variants 1-
in-3 SAT and not-all-equal 3SAT (often denoted by NAE-3SAT). In fact, for these two variants of SAT, Schaefer's dichotomy theorem shows that their
maonaotone versions (where negations of variables are not allowed) are also NP-complete.

Original presentation [edi]

Schaefer defines a decision problem that he calls the Generalized Satisfiability problem for S (denoted by SAT(S)), where 8§ = {Ry,..., Ry } is a finite
set of relations over the binary domain {0, 1}. An instance of the problem is an S-formula, i.. a conjunction of constraints of the form Rz, ..., #5,)




Complexity classification of CSPs

Schaefer’s dichotomy theorem, 1976:

Given any fixed set S of allowed Boolean constraints,
deciding satisfiability of a formula

f(x1,%9, .., xy) = N\;C; forC; € S
a.k.a. S-SAT

“*isin P if any of some simple conditions is true, ...
' a) “Every relation in S is 0-valid ‘
. o ' b) Every relation in S is 1-valid .
s*and otherwise is NP-complete. ') Every relation in S is weakly positive
' d) Every relation in S is weakly negative
) Every relation in S is affine |
f) Everyrelationin Sis bijunctive ”



Complexity classification of CSPs

* [Schaefer 1976] classifies S-SAT
* [Creignou 95] with [Khanna, Sudan, Williamson 97] classify S-Max-SAT
* [Jonsson 00] classifies $-Max-SAT with positive & negative weights.

* [Jonsson, Klasson, Krokhin 06] and [Thapper, Zivny 16] extends this to
non-binary variables.
* (Only positive weights)




End of detour, back to quantum



Complexity classification of S-LH

[Cubitt, Montanaro 13] classify S-LH for all sets S of 2-qubit terms:
Given a fixed set S of 2-qubit Hamiltonian termes,
S-LH is either in P, or is NP-, StogMA-, or QMA-complete.

.+ If every matrixin S is 1-local, S-LH is in P;

______________________________________________________________________________________________________________________________________________________________



What about product states?



What about product states?

We have a full classification of S-LH for 2-qubit termes,
i.e. estimating the minimum eigenvalue.

What about other Hamiltonian problems?
* Other ground state properties

* Constrained optimization

* Thermal limit

 Product states



Product states

A product state is an unentangled tensor product of single-qubit states

P=p1 VP QP33R X py

* Product states can be described efficiently classically.

: del; il Je-oly il



Product states

A product state is an unentangled tensor product of single-qubit states

P=p1 VP QP33R X py

* Product states can be described efficiently classically.
* They're intermediate between classical and general quantum states.

* For many natural sets of Hamiltonians, product states are rigorously
near-optimal.

* [Brandao, Harrow 13]: “High”-degree Hamiltonians’ ground states are close to
product states (monogamy of entanglement!)

* They’re a popular ansatz in classical Hamiltonian approximation
algorithms



Product state problems

A product state is an unentangled tensor product of single-qubit states

P=p1 VP QP33R X py

k-LH - prodLH

given a local Hamiltonian, estimate the minimum energy over all

product states:

min Tr(Hp)
P=P1P2--Pn

S-LH - S-prodLH
the problem prodLH restricted to H = ),; w; H; with H; € S.



Main Theorem

Drum roll...



Complexity classification of product state problems

Main Theorem

For any fixed set of 2-qubit Hamiltonian terms S,
»if every matrix in S is 1-local then S-prodLH is in P,
»and otherwise S-prodLH is NP-complete.

Corollary

For any fixed set of 2-qubit Hamiltonian terms S,
* the problem S-LH is at least NP-hard iff S-prodLH is NP-complete.
* the problem S-LH is in P iff S-prodLH is in P.



Proof outline

Main Theorem

For any fixed set of 2-qubit Hamiltonian terms S,
»if every matrix in S is 1-local then S-prodLH is in P,
»and otherwise S-prodLH is NP-complete.

v'If every term is 1-local, then we can optimize the state of each qubit individually,
so the problem isin P.

v'prodLH is always contained in NP, using product states’ concise classical
descriptions Tr(Hp) = Zij Tr(H;; pip;)

(dTo Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
* Design Hamiltonian gadgets to embed “nice” objective into optimal product state.
* That objective defines a variant of Vector Max-Cut, which we show is NP-complete.



Questions?



Analyzing product state energies

As a warmup, consider the example 2-qubit term
H=XQXRX+YQRXY+ZR7Z

where X, Y, Z are the Pauli matrices.

= olv=07 Slz=lp Zlr=[p 3l

is a basis for 2 X 2 Hermitian matrices



Analyzing product state energies

As a warmup, consider the example 2-qubit term
H=XX+YY +ZZ

where X, Y, Z are the Pauli matrices.
Write states using Bloch vectors:
p% =%(1 +a X +a,Y+aZ), aeR3|al=1
Then
Tr(H p%p?) = =3, a;b; Tr[H 6;0;] for o; € {X,Y,Z,1}
PP )= g HLj L) | L »

Cross terms disappear!

Tr[Hal-aj] +* 0 iff Tr[Haiaj] = Tr|II], which requiresi = j



Analyzing product state energies

As a warmup, consider the example 2-qubit term
H=XX+YY +ZZ

where X, Y, Z are the Pauli matrices.

Write states using Bloch vectors:
pa=%(1+a1X+a2Y+a3Z) aeR3|al =1
Cross terms disappear!
Tr(H p%p?) =
1
ZTr[alleX - XX +a,b,YY - YY +a;b,ZZ - A

— a1b1 +a2b2 +a3b3 — aB



Analyzing product state energies

H=XX+YY+ZZ
Tr(H papb) =a-b

Product state problems become optimization problems over Bloch
vectors!

{H}-prodLH is equivalent to optimizing sums of inner products:

Y v

UVEE
over unit vectors u, v € R3



General product state energies

Write an arbitrary 2-qubit term in th3e Pauli basis:

H = z M;io; Q g; + ZCkO'k@I-l-WkI@O'k

111\ \\

3 X 3 matrix M vectors ¢

Then
Tr(H p“p?V) =Moo+ 0alé + 0Tw



General product state energies
Tr(H p“p?V) =a'Mo+alé +otw
For a general 2-qubit H, we still have a sum of inner products,
but with extra terms

and warped by extra coefficients

Can we make this “nicer”?



Hamiltonian gadgets



Trick 1: Symmetrize

In general, the orientation of interactions matters: H4? + Hb2,
It eases analysis if the term is symmetric.

From now on, if we apply H to qubits a, b, we apply it in both
directions:
Hyym = H® + H"* = H® 4 SWAP H% SWAP

Since Hgy, is symmetric, M" is
symmetric, and we can analyze

i
a |

/ .

3 3
Hsym = z M’ijo'i 03y Oj +2(Ck +wi)(ox @1 +1Q ay)
k=1

[,j=1



Trick 2: Delete 1-local terms

3
Hsym = z M'iio; @ o; +
=1

Tr(H p%p?) =a'M'D
We borrow a nice gadget from [CM14].

To interact two qubits u, v, we add two ancilla qubits a, b:

U
L

uv _—_ [Juv ab ua vb
G — Hsym + Hsym o Hsym o Hsym

Negative weights cause all the 1-local terms to cancel 3




Result of Trick 2

3 3
Hsym = EM,iiO-i X o; + Z(Ck +wi)(op @ I +1 Q ay)
i=1 k=1
To interact two qubits u, v, we add two ancilla qubits a, b:
G* = Hsujym + Hg)?m — Hg‘lyam — nglzjm

Then,
Tr[G* pypypapp] = (U —D)'M'(@ - b)

NP

Bloch vectors




Result of tricks

3 3
Hsym = ZM’iiai X o; + z(ck +wi)(oxy @I +1Q oy)
i=1 k=1

To interact two qubits u, v, we add two ancilla qubits a, b,

and construct gadget G.
Tr[G™ pypypapp] = (@ —D)'M'(@ - b)

—M'(4 — D)

\4

g
D

M'(@ — D)

Given u, v are constrained, what is the minimum value of (i — ©)"M'(d@ — b)?

Qubits a, b are free, each become proportional to —M' (i1 — ),

M'" (a-9)
IM"" (@-D)|

So minimum value is... —2(4i — 9)TM"’

Stop thinking about inner products...

= =2||M"(u - )|

for M"" = |M'|

Start thinking about distances




Result of tricks

Using only a giventerm H € §,

Construct a Hamiltonian Hgpg = Dyp GYY,
Such that the minimum energy of a product state is

_ min Tr[Hfinal P1 - pn]
P=P1P2--Pn

II"‘

=Ill
||

2 ~2|IM"@=9)l| = ~2max ) IM" (@0l
uv

Call this sufficiently “nice”, and try to prove such a function is NP-hard.



Vector Max-Cut Problems

All classical TCS from here — no more quantum



Max-Cut

Max-Cut \




Vector Max-Cut

Max-Cut
MC(G) =

NIR N[~

Vector Max-Cut
MCy(G) =

DR NR

A A 2
max 2jep IE=Jl
Intuition: Embed a graph onto unit sphere $*~1 in R* to maximize the sum of the
squared distances



Stretched linear Vector Max-Cut

For W = B a fixed diagonal matrix;

! Y
givenagraph ¢ = (I, E),

estimate

1
MCy,(G) = = max 2 Wi — W

2 fiesk—1

Intuition: Embed a graph onto writsphere ellipsoid in R* to maximize
the sum of the sguared distances



Stretched linear Vector Max-Cut is NP-hard

Theorem: For any fixed non-negative nonzero W = diag(a, ,v),

MCi, is NP-complete.

Earlier, we showed how to reduce an instance of MCy;, to S-prodLH.

v'So, this theorem will complete our main result: S-prodLH is NP-hard.



Proof sketch 1

MCi, is NP-complete.

If « > [3,y, we can use a simple construction: \
* Given graph G, construct G’ by adding large star gadgets

.....

The star gadgets amplify the length of vectors assigned to the centers....
To maximize the lengths, vectors must live in 1 dimension. |
— Reduction from standard Max-Cut



Proof sketch 2

Theorem: For any fixed non-negative nonzero W = diag(a, ,v),
MCi, is NP-complete.

If « # [,y, we use a lengthier, but easy-to-analyze, construction.

1. Given graph G, construct a new graph G’ by replacing each edge
with a 3-clique (triangle) gadget.




Proof sketch 2

2. Observe that maximizing the total distance between the vectors in a
3-clique is equivalent to picking 3 points on an ellipsoid which
inscribe a triangle with maximum perimeter.




Proof sketch 2

3. Use the fact that maximum perimeter inscribed triangles are
(somewhat) unique.

Circle, Ellipse, Ellipsoid: fix any 1 point, Centroid: must fix 2 points to fully
there is exactly 1 max perimeter determine max perimeter triangle.
triangle.




Proof sketch 2

4. Every 3-clique gadget shares a vertex with another 3-cliqgue gadget.

a) So, every gadget is assigned at least 1 vector shared with
another gadget.

b) Given 1 fixed point, there’s a unique pair of other points giving
maximum length...

5. Conclude that G' can maximally satisfy every 3-clique gadget
iff the same set of 3 optimal vectors can be assigned to all 3-cliques.

The NP-complete 3-Coloring problem reduces to the Stretched linear
Vector Max-Cut problem. O]



Summary of proof of
main theorem



Proof summary

Main Theorem

For any fixed set of 2-qubit Hamiltonian terms S,
»if every matrix in S is 1-local then S-prodLH is in P,
»and otherwise S-prodLH is NP-complete.

v'If every term is 1-local, then we can optimize the state of each qubit
individually, so the problem is in P.

v'prodLH is always contained in NP, using product states’ concise classical
descriptions Tr(Hp) = 2 Tr(Hyj pip;)

(dTo Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.



Proof summary

JTo Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is
NP-hard.

* Product state problems can be viewed as optimization over single-
qubit Bloch vectors.

e Given an arbitrary non-trivial 2-qubit term, we construct gadgets to
make the product state energy “nice”.

* Call this new objective value Stretched linear Vector Max Cut (MC]];,).

* Show MC]W is NP-complete by reductions from 3-coloring or Max-Cut.



What’s next?

1. Can we use the complexity of product state problems to suggest the
general ground states of a class of Hamiltonians are not hard?

2. Classify S-prodLH with additional restrictions, e.g. only positive
weights, spatial geometry?

3. Hamiltonian Constrained-Optimization problems,
e.g. Quantum Vertex Cover
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Main Theorem: For any fixed set of 2-qubit Hamiltonian terms S,

 if every matrixin S is 1-local then S-prodLH isin P,

* and otherwise S-prodLH is NP-complete.

Corollary: For any fixed set of 2-qubit Hamiltonian terms S,

* the problem S-LH is at least NP-hard iff S-prodLH is NP-complete.
* the problem S-LH is in P iff S-prodLH is in P.
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