
Quantum versions of 𝐏𝐇

What is the Polynomial Hierarchy (𝐏𝐇)?

PH is a hierarchy of  complexity classes generalizing NP. It’s strongly believed the levels of  PH are distinct, 

just as we believe P ≠ NP. All of  PH equals P if  and only if  P = NP.

PH has applications in understanding the power of  randomness, low-depth circuits, counting classes, 

interactive proofs, second order logic, and near-term quantum sampling protocols!

The levels of  PH are denoted Σk and Πk for 𝑘 ≥ 0. Each level adds a layer of  nondeterminism: 

Σ0 = Π0 = P, Σ1 = NP, Π1 = coNP, Σ2 = NPNP, Π2 = coNPNP, …

Game theoretic intuition:  Σ𝑘 is the set of  questions for which the answer can be verified by a k-round 

debate with a computationally efficient referee. 

Merlin argues the answer is YES, Gandalf  argues the answer is NO. The two provers alternate sending 

messages to the referee. The provers can see each other’s messages and respond accordingly. The referee 

is passive, i.e. non-interactive.

PH is a constant-round, competing, non-interactive, public (perfect information) game.
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Proof  type Verifier type Results

𝐏𝐇 Classical string Classical in QPH

𝐐𝐂𝐏𝐇 Classical strings Quantum in QPH

𝐐𝐏𝐇 (Unentangled) quantum states Quantum

𝐩𝐮𝐫𝐞𝐐𝐏𝐇 Pure (Unentangled) quantum states Quantum in EXPPP

𝐐𝐄𝐏𝐇 Entangled quantum states Quantum equals QRG(1)

𝐃𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧𝐏𝐇 Classical mixed states Classical equals PH

𝐃𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧𝐐𝐂𝐏𝐇 Classical mixed states Quantum equals QCPH
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Results in orange are by [GY] and blue by [AGKR]

Entanglement:    𝐐𝐄𝐏𝐇 collapses to 𝐐𝐑𝐆(𝟏)

We define QEPH. Now, the provers are allowed to entangle their proofs: e.g. Merlin’s message in round 

1 may be entangled with his message in round 3. Here, we have relaxed the constraints on the provers, 

closer to the QIP and QRG models. We prove QEPH collapses to the 2nd level, which equals QRG(1).

RG and QRG are “Refereed Games” that are interactive with private communication. The referee sends 

follow-up questions to the provers, and the provers do not see each other’s messages.

QMA ⊆ PQMA ⊆ QRG 1 ⊂
?

QRG 2 = PSPACE

Proof  sketch: with no un-entanglement, QEPH collapses by convexity and minimax arguments. In fact, 

this even works for a polynomial number of  QEPH rounds.
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Open Questions

Can QEPH = QRG(1) help resolve QRG(1) vs. QRG 2 = PSPACE?

Can QPH help attack QMA(2)? Know QMA 2 ⊆ QΣ3 ⊆ NEXP. Is pureQΣ3 ⊆ NEXP?
Compare quantifier definitions with oracle definitions: QMAH = QMAQMA…

, which is in 

the counting hierarchy and PSPACE, while QMA 2 ⊆ QPH ⊆ EXPPP.

Classical mixed states:    𝐃𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧𝐏𝐇 = 𝐏𝐇

QPH alters proofs in two ways: (1) they are quantum not classical states (2) the states may be mixed. 

Convexity arguments often let us restrict our attention to pure states, but here the competitive setup 

breaks this. For example: is it true that for all 𝑥 there exists a 𝑦 such that 𝑥 = 𝑦? If  𝑥, 𝑦 are bits then 

YES. But if  𝑥, 𝑦 are qubits – or even single-bit classical mixed states – then NO.

We define DistributionPH and DistributionQCPH to allow classical mixed states / distributions / 

random variables as proofs (and the referee gets one sample). These proofs are an intermediate 

between classical and quantum states.

This presents a new game theory model: proofs are public, but they are undetermined (random).

We find that in fact, PH = DistributionPH and QCPH = DistributionQCPH.

Our proof  generalizes a result of  [Lipton and Young 1994] that provers can send distributions with at 

most polynomial support.

𝐏𝐇, 𝐐𝐂𝐏𝐇 ⊆ 𝐩𝐮𝐫𝐞𝐐𝐏𝐇

Error-reduction: We introduce pureQPH and show one-sided error reduction for it. While error 

reduction for QCPH follows from parallel repetition, it is non-trivial for QPH or pureQPH just like for 

QMA(2) - the tensor product structure is not necessarily preserved during repetition. 

To overcome this, we give an asymmetric version of  the Product Test [Harrow, Montanaro 13] dubbed 

the APT. The APT takes in an 𝑛-system state |𝜓⟩ in register A, and (ideally) 𝑚 copies of  |𝜓⟩ in register 

B. The APT accepts if  B is the correct form and |𝜓⟩ is a product state.

Lower-bound: We use the APT to force the final pureQPH prover to send many copies of  all 

previous proofs, forcing the provers to send classical strings instead of  superpositions. 

This avoid the multiplicative blowup of  [GY], but gives QCPH ⊆ pureQPH not ⊆ QPH.If 𝐐𝐂𝚺𝐤 = 𝐐𝐂𝚷𝐤 then 𝐐𝐂𝐏𝐇 collapses

Note that in contrast to PH and QCPH, we know QΣ2 = QΠ2 = QRG 1  are equal.

This collapse theorem was left open by [GSSSY18] because of  subtle issues dealing with promise gaps. 

We give a careful proof  handling these issues, showing QCPH behaves similarly to PH.

𝐐𝐏𝐇 is at least as powerful as 𝐏𝐇:    𝐏𝐇, 𝐐𝐂𝐏𝐇 ⊆ 𝐐𝐏𝐇

[GSSSY18] defined QPH but left it an open problem whether QPH contained QCPH or even PH! 

QPH trivially contains QMA(2), QMA, and BQP, but containment of  PH is non-trivial. Provers might 

cheat by sending mixtures of  strings instead of  a fixed string.

We show PH ⊆ QCPH ⊆ QPH. Our proof  is a careful parallel repetition protocol which increases the 

number of  rounds by a constant multiple.

Karp-Lipton:    If 𝐐𝐂𝐌𝐀 ⊆ 𝐁𝐐𝐏/𝐦𝐩𝐨𝐥𝐲 then 𝐐𝐂𝐏𝐇 = 𝐐𝐂𝚺𝟐

In words, there do not exist small circuits solving QCMA unless QCPH collapses.

Using our new collapse theorem above, we want to show QCMA ⊆ BQP/mpoly implies QCΣ2 = QCΠ2.

The classical Karp-Lipton theorem uses search-to-decision reduction for SAT. However, this does not 

easily work with quantum promise problems. We use the QCMA Valiant-Vazirani filter of  [ABBS08] to 

make any accepting proofs unique. Then we use the single-query quantum search-to-decision reduction 

for UQCMA from [INNRY22]. From here, the proof  follows as for Karp-Lipton.

New upper bound:    𝐐𝐏𝐇 ⊆ 𝐄𝐗𝐏𝐏𝐏

𝐐𝐏𝐇 ⊆ 𝐩𝐮𝐫𝐞𝐐𝐏𝐇: This follows by purification of  mixed states. Just double the number of  qubits.

𝐩𝐮𝐫𝐞𝐐𝐏𝐇 ⊆ 𝐄𝐗𝐏𝐏𝐏: The only previous bound on QPH is the trivial QPH ⊆ EXPH = NEXPNPNP…

. 

We upper bound both QPH and pureQPH by EXPPP, an exponential analogue to Today’s theorem.

Proof: pureQΣk ⊆ NEXPNPk−1
, and NEXPO ⊆ EXPNPO

 for any O, so pureQΣk ⊆ EXPNPk−1
. Then, 

NPk ⊆ PPP(Toda’s theorem), so pureQΣk ⊆ EXPPPP
. Finally, EXP can simulate the P computation so 

that EXPPPP
⊆ EXPPP.
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Just like QCMA, QMA, QMA1, and QMA(2), there are several natural definitions for quantum PH.

[GSSSY 2018] defined QCPH and QPH. Both classes generalize BQP = QCΣ0 = QΣ0.

QCPH generalizes QCMA = QCΣ1. QPH generalizes QMA = QΣ1 and QMA 2 ⊆ QΣ3.

PH
If  the correct answer is YES: ∃y1 ∀y2 ∃y3 ∀y4 such that M y1, y2, y3, y4 = 1 

If  the correct answer is NO: ∀y1 ∃y2 ∀y3 ∃y4 such that M y1, y2, y3, y4 = 0 

QPH
If  the correct answer is YES: ∃𝜌1 ∀𝜌2 ∃𝜌3 ∀𝜌4 such that 𝑉 𝜌1, 𝜌2, 𝜌3, 𝜌4 = 1 w.h.p.

If  the correct answer is NO: ∀𝜌1 ∃𝜌2 ∀𝜌3 ∃𝜌4 such that 𝑉 𝜌1, 𝜌2, 𝜌3, 𝜌4 = 0 w.h.p.
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