Justin Yirka

lin /in atim viel 11 702 220 7056 . .

703-229-7956 yırka@utexas.edu JustinYırka.com linkedin.com/in/justinyırka
 Ph.D. candidate in quantum computing advised by Scott Aaronson, graduating in 2025, seeking an industry position. Proven skills in research and communication. •7+ publications in top venues (QIP, TQC,) •20+ professional and public presentations.
• Quantum algorithms, complexity, Hamiltonians • 2 National Labs, 3 universities, and 11+ co-authors
EDUCATION
Ph.D. in Computer Science The University of Texas at Austin Expected May 2025 Advised by Scott Aaronson, Quantum computation, Complexity theory, Algorithms
M.S. in Computer Science The University of Texas at Austin 2022
Selected courses: Machine learning, Randomized algorithms, Programming languages
B.S. in Computer Science Virginia Commonwealth University 2018
B.S. in Mathematical Sciences (Concurrent degrees)
Awards: Canstone Design Award \$660 grant for senior project Android app 2017
VCU Presidential Scholarship (\$110,000). Awarded to 0.6% of students. 2014
EVDEDIENCE
R&D Intern Sandia National Laboratories June 2023 – present
• Initiated and completed a project in 6 months which was accepted to OIP (top venue).
 Proved complexity of Hamiltonian product state optimization problems, complementing the work of the Sandia optimization algorithms group. Poteined as a wear round interm
 Summer School Fellow Los Alamos National Laboratories Summer 2019 Designed new algorithms for entanglement spectroscopy requiring fewer qubits while maintaining noise-resilience. Published in <i>Quantum</i>.
• Experimented with Honeywell Quantum device to test new circuit designs.
 Programmed noisy quantum circuit simulations in Qiskit Python up to 24 qubits.
 Maintained code base using git, GitHub, Jupyter, and Unix tools.
 Research Assistant Computational Graph Theory Lab, Virginia Commonwealth University Summer 2018 Wrote algorithms for computing graph properties in Sage/Python. Maintained a database of graphs, properties, and theorems. Improved project documentation and management using git, GitHub.
NSF REU Researcher QuICS, The University of Maryland Summer 2017
• Reviewed literature, performed numerical experiments, and investigated quantum tomography.
Research Assistant Quantum Computing Lab, Virginia Commonwealth University2015 - 2016• Started as a freshman and self-taught necessary linear algebra, TCS, and QC over the summer.Contributed key ideas for multiple proofs. Published 2 papers as an undergraduate.
TeachingHead Teaching Assistant Quantum Information Science for M.S. studentsSpring '22, '23, '24• Led entire course except for recorded lectures. Supervised 4 graduate TAs, 200+ students.Instructor Software Engineering (Java), UT International Academy• Developed entire course including lectures and Java programming assignments.Summer 2021
Teaching Assistant Undergraduate Rhetoric (English), Virginia Commonwealth University2015

(Publications listed on next page)

Last updated October 23, 2024

PUBLICATIONS

- S. Grewal and J. Yirka. The entangled quantum polynomial hierarchy collapses. CCC, July 2024. (link)
- J. Kallaugher, O. Parekh, K. Thompson, Y. Wang, J. Yirka. Complexity classification of product state problems for local Hamiltonians. QIP, January 2024. (link)
- S. Gharibian, M. Santha, J. Sikora, A. Sundaram, J. Yirka. Quantum generalizations of the polynomial hierarchy with applications to QMA(2). *Computational Complexity*, 2022. (link)
- J. Yirka and Y. Subasi. Qubit-efficient entanglement spectroscopy using qubit resets. *Quantum*, 2021. (link)
- S. Gharibian, S. Piddock, J. Yirka. Oracle complexity classes and local measurements on physical Hamiltonians. QIP, 2020. (link)
- S. Gharibian and J. Yirka. The complexity of simulating local measurements on quantum systems. TQC, 2017 and *Quantum*, 2019. (link)

ADDITIONAL ACTIVITIES

Chair UT Computer Science Graduate Student Association	Sep 2020 – Dec 2021
• GRACS representative to UTCS Diversity, Equity, and Inclusion (DEI) Council.	
• Co-Organized Application Assistance Program for under-represented Ph.D. applican	ts. 2020
Founder and President RamDev: Software Development at VCU	2016 - 2018
• Coordinated 46 weekly seminars including 9 corporate speakers and several hackathe	on trips.
 Secured and managed \$2400 in funding and resources. 	

• Increased weekly attendance to 20+ students, becoming largest C.S. organization at VCU.